
Natural language representation and content extraction

using RDF, SHACL and the Universal Networking

Language (UNL)

David Rouquet
1
, Valérie Bellynck

2
, Vincent Berment

2,3,4
and Christian Boitet

2

1 Tétras Libre SARL, 38400, St Martin d’Hères, France
2 UGA-LIG-GETALP, 38080, Grenoble, France

3 CS GROUP, 92350, Le Plessis Robinson, France
4 INaLCO, 75214, Paris, France

Abstract. Extracting formal knowledge (ontologies) from natural language is a

challenge that can benefit from a (semi-) formal linguistic representation of

texts, at the semantic level. We propose to achieve such a representation by im-

plementing the Universal Networking Language (UNL) specifications on top of

RDF. Thus, the meaning of a statement in any language will be soundly ex-

pressed as a RDF-UNL graph that constitutes a middle ground between natural

language and formal knowledge. In particular, we show that RDF-UNL graphs

can support content extraction using generic SHACL rules and that reasoning

on the extracted facts allows detecting incoherence in the original texts. This

approach is experimented in the UNseL project that aims at extracting ontologi-

cal representations from system requirements/specifications in order to check

that they are consistent, complete and unambiguous. Our RDF-UNL implemen-

tation and all code for the working examples of this paper are publicly available

under the CeCILL-B license at https://gitlab.tetras-libre.fr/unl/rdf-unl

Keywords: Natural language, content extraction, RDF, SHACL.

1 Introduction and motivations

The UNseL
1
 project aims at providing tools to automatically detect ambiguity, inco-

herence and incompleteness in system requirements and specifications, written in

natural languages. We typically target the design of telecommunication systems or

aeronautical equipment but are not limited to those. To check the quality of require-

ments and specifications, especially their coherence, we must extract and represent

the meaning of texts in a form that can support automatic reasoning. This task is di-

rectly related to the broader Artificial Intelligence problem of machine reading, the

automatic understanding of texts, defined in [1] as : “the formation of a coherent set

of beliefs based on a textual corpus and a background theory”.

1 UNseL : Universa l Networking system engineering Language

2

Among other tools and formalisms that shall be used to support the reasoning part of

the project, the Semantic Web standard stack has been identified as the most promis-

ing. It provides: (1) convenient formats and vocabularies for interoperability at the

syntactic and semantic levels (RDF, RDFS, OWL, etc.), (2) generic reasoning tools to

check consistency and infer facts in knowledge bases and (3) rule languages to devel-

op custom transformations and validations (SHACL and SPARQL).

This paper focuses on bringing to the Semantic Web a linguistic framework to

soundly represent the meaning of a sentence, directly in RDF. It proposes a complete

serialization of the Universal Networking Language (UNL) as a schema on top of

RDF (we simply call it RDF-UNL). UNL is a linguistico-semantic interlingua that

represents a sentence in any natural language L as a hypergraph, where arcs bear se-

mantic relations, and nodes bear interlingual lexemes (word senses) taken from an

autonomous lexical space, plus semantic and pragmatic features. It has been acknowl-

edged as a framework suited to machine translation and tasks such as (multilingual)

question answering, information extraction, information retrieval, etc. [2] Therefore it

is a strong candidate to operate as a linguistic paradigm for machine reading in Se-

mantic Web applications.

On the other hand, our proposal will allow Natural Language Processing tools

based on UNL to natively benefit from Semantic Web technologies and resources. It

will create a mutually beneficial bridge between those research areas.

The paper is organized as follows. In Section 2, we present UNL and give details

about its components and their implementation on top of RDF. In section 3, we show

how RDF-UNL can be used to represent the meaning of sentences and documents and

discuss the implementation of an advanced feature of UNL, the scopes. Finally, sec-

tion 4 presents a working example that illustrates how to extract OWL statements

from a RDF-UNL representation of two system requirements. An automatic reasoning

is performed on the OWL statements to exhibit an incoherence in the requirements.

This last example, even if preliminary, shows the potential of our proposal to com-

plement existing methods [3–5] in extracting meaningful knowledge from free texts.

Our RDF-UNL implementation and all the code for the working example are pub-

licly available under the CeCILL-B license
2
 in a Gitlab repository at [6]. All code

samples in this article are using the RDF Turtle syntax [7], except if stated otherwise.

2 UNL components and implementation in RDFS

2.1 Generalities about UNL

The UNL program started in 1996, as an initiative of the Institute of Advanced Stud-

ies
3
 of the United Nations University in Tokyo, Japan. Its goal is to construct a multi-

lingual infrastructure so all peoples can have access to information and knowledge in

their native language and culture.

2 https://cecill.info/licences.fr.html
3 https://ias.unu.edu/en/

http://www.unlweb.net/wiki/UNL_Programme
http://www.ias.unu.edu/
http://www.ias.unu.edu/
http://www.unu.edu/

3

The UNL language represents the meaning of a sentence as a hyper-graph, as we il-

lustrate in Fig. 1, where:

 The nodes are so-called Universal Words (UW) completed with semantic and

pragmatic attributes (time, modality, deep aspect, etc.) or sub-graphs (scopes) rep-

resenting parts of the sentence,

 The directed arcs are labeled with semantic binary relations (agent, beneficiary,

duration, destination, etc.), linking together nodes and/or sub-graphs (scopes).

Because UNL structures use only binary relations and unary attributes, they can be

represented very naturally with RDF triples.

Fig. 1. Example of simple UNL graph

The UNL specifications have evolved over time, mainly to expand or reconsider the

sets and definitions of allowed relations and attributes in UNL graphs. The different

versions are available in [8]. Our current work focused on the last version (UNL2010)

proposed by the UNL
Web

 community [9]. We plan to also release at least version 3.3

available as an aligned RDF scheme so our work can apply to systems that are not

aligned with the UNL2010 proposal.

The following sections present in detail the fundamental components of the UNL and

their implementation as parts of an RDF scheme. The implementation should be self-

sufficient, containing all necessary definitions, examples and external links. The

scheme makes use of the standard vocabularies RDFS [10], SKOS [11] and OWL

[12]. The namespace of the scheme is: @prefix unl: <https://unl.tetras-libre.fr/rdf/schema#> .

We used two environments for the development : the Open Source OWL editor Pro-

tégé 5
4
 [13] and the commercial Topbraid Composer that offers a free version

5
.

4 https://protege.stanford.edu/

https://protege.stanford.edu/

4

2.2 Universal Words and the UNL Knowledge Base (UNLKB)

The vocabulary of UNL is composed of interlingual lexemes called Universal Words

(UW for short). A UW is designed to refer unambiguously to a concept, shared among

several languages. However, UWs correspond to acceptions (word senses) in a lan-

guage, so distinct UWs can exist for affection and disease, even though they refer to

the same concept. A UW is made of:

1. A headword, if possible derived from English, which can be a word, initials, a

compound word, an expression or even an entire collocation. It is a label for the

concepts it represents in its original language,

2. A list of restrictions that aims to precisely specify the concept the UW refers to. A

restriction is composed of a word linked by a Universal Relation (see section 2.3)

The following are possible UWs:

 play(icl>act,agt>thing,obj>thing) and play(icl>show)

(the sense of the headword is focused by the attributes, icl stands for included in).

 ikebana(icl>flower_arrangement) -- (the headword comes from Japanese).

 go_down -- (the headword does not need any refinement)

For a complete volume of UWs, any word appearing in a UW restriction should be

the headword of another UW (except for top concepts defined below). This leads to

the following notion: The Master Definition of a UW expands the restrictions with

complete UWs instead or only headwords. For instance, the master definition of

play(icl>show) is play{icl>show(icl>thing)}. The UW can also be noted with the

abbreviation play(icl>show>thing).

We see that master definitions organize naturally a volume of UWs in a semantic

network called a UNL Knowledge Base (UNLKB). A UNLKB can be qualified as a

pre-ontology, as it arranges word senses instead of concepts and its logical validity is

not ensured. Relations icl (included in), iof (instance of) and equ (equivalent) play a

special role in structuring a KB and can be related resp. to rdfs:subClassOf,

rdfs:instanceOf and owl:sameAs. UWs can be anchored to top level concepts in the

KB that are not associated with UWs. Fig. 2 illustrates a set of possible top concepts.

Fig. 2. Example of top concepts in a UNLKB

5 https://www.topquadrant.com/topbraid-composer-install/

https://www.topquadrant.com/topbraid-composer-install/

5

Several volumes of UWs have been created and linked to various natural languages.

For instance, the following are freely available on the Web:

 A volume initiated from Princeton Wordnet 2.1 synsets and regularly post edited
6
,

 A volume created by the UNL
Web

 community, available after creating an account
7
.

Implementation. In the RDF-UNL schema, we created a class unl:Universal_Word

with the following sub-classes :

 unl:UW_Lexeme, for the UWs themselves, it must be divided in subclasses for

different volumes of UWs,

 unl:UW_Occurrence, for instance, in the text “the black cat and the white cat”, two

occurrences cat:01(icl>mammal) and cat:02(icl>mammal) will appear in the UNL

graph for the same UW cat(icl>mammal),

 unl:UNLKB_Top_Concept, even though they are not real UWs, it was handy to

subsume them here.

The following properties apply:

 In a RDF-UNL graph representing a sentence, unl:UW_Occurrence instances are

linked with Universal Relations (see section 2.3) and support Universal Attributes

(see section 2.3).

 In a UNLKB, unl:UW_Lexeme and/or unl:UNLKB_Top_Concept instances are

linked with unl:Universal_Relations (see section 2.3).

 Instances of unl:UW_Lexeme have an owl:AnnotationProperty named unl:has_id

and unl:has_master_definition. The UW lexical form is stored using rdfs:label.

 Corresponding unl:UW_Lexemes and unl:UW_Occurrences appearing respectively

a UW volume and a RDF-UNL graph are linked with the following pieces of

owl:ObjectProperty:

─ unl:has_occurrence and

─ unl:is_occurrence_of (the two are linked by owl:inverseOf).

The following presents an extract of code related to a unl:UW_Lexeme instance. For

readability, we chose to derive the URI from the lexeme and not from the id:

@prefix example: <https://unl.tetras-libre.fr/rdf/example#> .

example:broadcast(icl--message)

 a unl:UW_Lexeme , example:Test_UW_Volume ;

 rdfs:label "broadcast(icl>message)" ;

 unl:has_master_definition "broadcast{icl>message(icl>thing)}" ;

 unl:has_id "202004223698" ;

 unl:has_occurrence example:broadcast(icl--message)__00000016 ;

 unl:icl <https://unl.tetras-libre.fr/rdf/example#message(icl--thing)> .

6 https://gitlab.com/dikonov/Universal-Dictionary-of-Concepts
7 http://www.unlweb.net/unlarium/

https://gitlab.com/dikonov/Universal-Dictionary-of-Concepts
http://www.unlweb.net/unlarium/

6

Further examples are shown in section 3, presenting how instances of

unl:UW_Occurrence are used to represent sentences as RDF-UNL graphs.

2.3 Universal relations

Universal relations describe semantic binary and directed relations between two nodes

of a UNL graph. These relations are at the conceptual level and are more abstract than

grammatical relations, even though they can strongly overlap in some cases, like the

semantic agent and the grammatical subject (but only when it is a volitional agent).

UNL2010 specifications propose 40 universal relations organized in a hierarchy.

User can refer to the specifications at [14] or to RDF-UNL at [6] for the complete list.

Implementation. We begin by defining the class unl:UNL_Node, a concept that does

not exist in UNL specifications but that is handy for us, especially to declare relations

domains and ranges. unl:UNL_Node contains of the following subclasses :

 unl:UNLKB_Node (nodes appearing in a UNLKB)

o unl:UW_Lexeme

o unl:UNLKB_Top_Concept

 unl:UNL_Graph_Node (nodes appearing in a graph representing a sentence)

o unl:UW_Occurrence

o unl:UNL_Scope

 Universal relations are at first declared as instances of owl:ObjectProperty structured

as a hierarchy with rdfs:subPropertyOf. The root of this hierarchy is the generic

unl:Universal_Relation. It also made sense to declare this generic root property as a

sub-property of skos:semanticRelation. Relations can be used in two contexts:

 A UNLKB, as we saw in section 2.2, linking instances of unl:UNLKB_Node,

 A RDF-UNL graph representing a sentence, as we will see in section 3, linking

instances of unl:UNL_Graph_Node.

The following presents an extract of code related to the definition of a

unl:Universal_Relation :

unl:ant a owl:Class ;

 a owl:ObjectProperty ;

 rdfs:label "ant" ;

 rdfs:subPropertyOf :Universal_Relation , unl:aoj ;

 rdfs:domain unl:UNL_Node ;

 rdfs:range unl:UNL_Node ;

 skos:altLabel "opposition or concession"@en ;

 skos:definition " Used to indicate that two entities do not share the same

 meaning or reference. Also used to indicate concession."@en ;

 skos:example """John is not Peter = ant(Peter;John) / 3 + 2 != 6 = ant(6;3+2) /

 Although he's quiet, he's not shy = ant(he's not shy;he's quiet)"""@en .

7

Further examples are shown in section 3, presenting how sub-properties of

unl:Universal_Relation are used to represent sentences as RDF-UNL graphs. We will

see that the usage of scopes makes things slightly more complicated and will propose

adjustments in the representation of universal relations to take this into account.

2.4 Universal attributes

Attributes are unary properties on unl:UNL_Graph_Node instances. They establish

the circumstances under which the nodes are used and may convey information as:

 the role of the node in the UNL graph, as for the attribute .@entry, that indicates

the main (starting) node of a UNL graph

 the semantic and pragmatic information, which is conveyed in natural languages by

various means such as flexion and derivation morphemes, or analytic construc-

tions. For example, imperfect past in French expressing habit in the past can be

noted as .@past.@repetition, and immediate future (I am coming! J’arrive!) as

.@future.@immediate.

 the (external) context of the utterance, i.e., non-verbal elements of communication,

such as speech-act, sentence and text structure, politeness level, schemes, etc.

UNL2010 specifications propose 344 universal attributes organized in a hierarchy.

User can refer to the specifications at [14] or to RDF-UNL at [6] for the complete list.

Implementation. We define the datatype unl:attribute as the list of the 344 possible

strings for universal attributes with the following code :

unl:attribute

 rdf:type rdfs:Datatype ;

 rdfs:comment """ More informations about Universal Attributes here

 http://www.unlweb.net/wiki/Universal_Attributes """ ;

 rdfs:label "Universal Attribute" ;

 owl:equivalentClass [rdf:type rdfs:Datatype ;

 owl:oneOf ("@1" "@2" "@3" "@ability" "@about" "@above"

 […]

 "@worth" "@yes" "@zoomorphism")] .

As attributes are organized in a hierarchy, we defined subclasses of unl:attribute rep-

resenting individual attribute values with their definitions. For instance:

<https://unl.tetras-libre.fr/rdf/schema#@hyperbole>

 rdf:type owl:Class ; rdfs:label "hyperbole" ; rdfs:subClassOf :Tropes ;

 skos:definition "Use of exaggerated terms for emphasis" .

At the moment those subclasses are informative only. They provide a way to include

the attributes hierarchy and definitions but are not themselves declared as instances of

rdfs:Datatype as we thought it would be an unnecessary complication.

mailto:.@past.@repetition
http://www.unlweb.net/wiki/Universal_Attributes

8

Attributes are attached to UNL graph nodes using the datatype property

unl:has_unl_attribute defined with the following code :

unl:has_attribute

 rdf:type owl:DatatypeProperty ; rdfs:domain :UNL_Node ; rdfs:range unl:attribute .

Further examples are shown in section 3, presenting how attributes are used to repre-

sent sentences as RDF-UNL graphs.

3 Representing sentences and documents as RDF-UNL

3.1 Scopes in UNL hypergraphs

As we already said, UNL may need more than simple graphs to represent a sentence.

It may need hypergraphs where some nodes are another UNL graph, and not simply a

UW. Such a hypergraph is presented in Fig. 3. In the sentence “The system displays a

channel in green when it is in the broadcast state”, when is linked by the relation obj

to the entire sub-sentence “[a channel] is in the broadcast state”, itself represented as a

UNL subgraph. Those hypernodes are called scopes. The main scope of a graph is not

explicitly declared. It is also important to note that a scope contains relations between

UWs and not only UWs. Indeed, a UW occurrence can participate in several scopes,

as illustrated in Fig. 3, where “channel” is in the main scope and scope 01. Each

scope must contain exactly one UW bearing the attribute .@entry.

Fig. 3. Example of a UNL hypergraph

9

In the following, we discuss two implementations that have both advantages and

drawbacks. The first one uses RDF named graphs and the second a reification of

relations. At the moment we consider that the two possibilities can coexist in RDF-

UNL, one or the other being used depending on specific application constraints. It is

easy to write SPARQL rules to convert one implementation into the other.

Implementation 1 – Named graphs. An RDF graph can itself be named with an

URI. However, the RDF standard does not provide a way to declare which triples

belong to a graph, other than gathering them in the same file, accessible over HTTP at

the graph’s URI (in this case, a URL). Even though there are proposals to extend RDF

triples as quads [15], adding the provenance graph to a triple, they are not part of the

standard and their support in existing tools is very heterogeneous. Therefore, RDF-

UNL allows representing scopes as named graphs, but also provides another means to

handle them (reification), that we describe in the following paragraph. The following

code presents a RDF-UNL graph, with scopes as named graphs, using TriG syntax

[15] (triples that are in the scope are grayed):

example:R2

 rdf:type unl:UNL_Sentence ;

 rdfs:label "The system displays a channel in green when it is in broadcast state"@en .

example:UNL_Scope_00000017

 rdf:type unl:UNL_Scope ;

 rdfs:label "01"@fr ;

 unl:is_substructure_of :R2 .

example:when_00000012

 rdf:type unl:UW_Occurrence ;

 rdfs:label "when(icl>how,com>always,tim>uw,obj>uw)" ;

 unl:has_lexeme example:when-icl--how,com--always,tim--uw,obj--uw-

 unl:obj :UNL_Scope_00000017 .

example:UNL_Scope_00000017 { example:be_in_a_state_00000013

 unl:aoj exemple:channel_00000014 ;

 unl:obj example:state_00000015 .

 example:state_00000015

 unl:mod example:broadcast_00000016 . }

Implementation 2 – Reification. Another way to declare that a relation belongs to a

scope is to increase its arity. In this perspective, UNL relations link not only a source

and a target, but also a scope. The only way to represent n-ary relations using RDF is

using reification, as explained in [16].

To achieve this, we declared that the unl:Universal_Relation property and its sub-

properties are also of type owl:Class and organized as sub-classes. To declare that a

relation ex:UW1 unl:rel ex:UW2 holds in scope ex:scope1, we write something like:

ex:rel1 a unl:rel ; unl :has_source ex:UW1 ; unl :has_target ex:UW2 ; unl :has_scope ex:scope1 .

10

In this setup, we not only declare that a relation holds, but we explicitly create an

occurrence of this relation as an instance of unl:Universal_Relation. In the example

we gave for implementation 1, the part example:UNL_Scope_00000017{[…]} be-

comes the following (the rest is not changed):

example:be_in_a_state_00000013--aoj--channel_00000014

 rdf:type unl:aoj ;

 unl:source example:be_in_a_state_00000013 ;

 unl:target exemple:channel_00000014 ;

 unl:has_scope example:UNL_Scope_00000017 .

example:be_in_a_state_00000013--obj--state_00000015

 rdf:type unl:obj ;

 unl:source example:be_in_a_state_00000013 ;

 unl:target exemple:state_00000015 ;

 unl:has_scope example:UNL_Scope_00000017 .

example: state_00000015--mod--broadcast_00000016

 rdf:type unl:mod ;

 unl:source exemple:state_00000015 ;

 unl:target example:broadcast_00000016 ;

 unl:has_scope example:UNL_Scope_00000017 .

3.2 Document structure

UNL allows a very simple structuring: documents are divided into paragraphs, them-

selves divided into sentences.

Implementation: We created the classes unl:UNL_Document, unl:UNL_Paragraph

and unl:UNL_Sentence, which are structures larger than unl:UNL_scope and

unl:UW_Occurrence. Instances of those five classes can be linked with the relations

unl:is_superstructure_of and unl:is_substructure_of.

3.3 Existing UNL services

The task of creating UNL graphs from natural language texts is called enconversion.

The reverse task is called deconversion. Such a bi-directional service, supporting

English and Russian (usable for translation) is described in [17] and available online
8
.

The UNL graphs of Fig. 1 and Fig. 3 are post-edited graphs obtained from this ser-

vice. It is the easiest way to start playing with UNL.

UNL
Web

[9] provides several online applications
9
 and tools

10
 around UNL, as well

as linguistic resources for a dozen languages
11

.

8 http://unl.ru/deco.html
9 http://www.unlweb.net/wiki/Applications
10 http://www.unlweb.net/wiki/Tools
11 http://www.unlweb.net/unlarium/

http://unl.ru/deco.html
http://www.unlweb.net/wiki/Applications
http://www.unlweb.net/wiki/Tools
http://www.unlweb.net/unlarium/

11

A tool to show UNL graphs in SVG and a “toy” French deconverter are also avail-

able online as part of Lingwarium
12

. Open source developments made for the UNseL

project will also be released in Linguarium. This should include a French enconverter

and deconverter.

Finally, as part of our present work, a UNL to RDF serializer (unl2rdf) is in devel-

opment. All the code will be available online at [6] and a Web service will be de-

ployed shortly
13

.

4 Constructing OWL axioms from RDF-UNL graphs and

reasoning

4.1 Working example

In this section, we present a working example for a possible application of RDF-UNL

that is currently experimented in the UNseL project. We consider the two system

requirements of Fig. 1 and Fig. 3:

 R1: The system allows a radio channel to take on two states: Listening and Traffic.

 R2: The system displays a channel in green when it is in broadcast state.

The goal is to automatically detect the terminological incoherence between the two

requirements: R1 declares that Listening and Traffic are the only allowed states for a

radio channel whereas R2 talks about a channel in broadcast state.

To achieve this goal, we propose the following:

1. Enconvert R1 and R2 to obtain UNL graphs like Fig. 1 and Fig. 3 (they are post

edited graphs generated by the Web service at http://unl.ru/deco.html),

2. Serialize the UNL graphs in RDF (using https://unl.demo.tetras-libre.fr/ that will

be deployed in May 2020),

3. Use generic SHACL rules (W3C recommendation [18]) to construct OWL state-

ments from the RDF-UNL graphs,

4. Use a generic OWL reasoner to detect inconsistencies.

4.2 Generic SHACL rules

We have developed and executed SHACL SPARQL rules (sh:SPARQLrule), using

Topbraid Composer Free Edition. The rules are generic enough so they can be used in

various contexts to construct OWL statement that can support reasoning.

12 http://lingwarium.org, in the top left click Workplace, then select UNL, Language pair

UNL-FRA and finally the test tab.
13 https://unl.demo.tetras-libre.fr/

http://unl.ru/deco.html
https://unl.demo.tetras-libre.fr/
http://lingwarium.org/

12

Rule 1: Extract cardinality. This first rule apply on (reified) instances of the relation

unl:qua used to express the quantity of an entity. It constructs a statement expressing

an owl:cardinality with the following SPARQL code:

CONSTRUCT { ?lex owl:cardinality ?tInt }

WHERE { ?this a unl:qua ;

 unl:has_source ?s ;

 unl:has_target ?t .

 ?t rdfs:label ?tLabel .

 ?s unl:is_occurrence_of ?lex

 BIND(xsd:integer(?tLabel) AS ?tInt) }

Rule 2: Extract enumerations. This second rule detect enumeration patterns in

RDF-UNL graphs and declare the adequate class using owl:oneOf, supposing that the

enumeration is complete. The SPARQL query also checks that the UNL restrictions

of the “head”
14

 of the enumeration contain icl>attribute. Hence we know that we are

talking about possible values for an attribute and declare the enumerated class as an

owl:Datatype. Finally, we did not find a query that works for arbitrary long enumera-

tions. The following code works only for length two
15

, as in R1:

CONSTRUCT { ?lex owl:equivalentClass [rdf:type rdfs:Datatype ; owl:oneOf (?l1 ?l2)] }

WHERE { ?this a unl:cnt ;

 unl:has_source ?s ;

 unl:has_target ?t1 .

 ?s unl:is_occurrence_of ?lex .

 ?lex rdfs:label ?label .

 FILTER regex(?label,"icl>attribute")

 ?and1 a unl:and ;

 unl:has_source ?t1 ;

 unl:has_target ?t2 .

 ?t1 rdfs:label ?l1 .

 ?t2 rdfs:label ?l2 . }

Rules 3 and 4: Extract and instantiate datatype properties. Finally, two rules

identify patterns described in Fig. 4:

Fig. 4. A UNL pattern corresponding to an owl:DatatypeProperty

14 In R1, we call state the “head” of the enumeration two states: Listening and Traffic.
15 We included code for longer enumerations in our public Git.

13

Rules 3 and 4 produce the following RDF/OWL triples (pseudo-code), where

UWi_lexeme is the lexeme corresponding to UWi occurrence and UWi_label its label:

UW1_lexeme a owl:DatatypeProperty ;

 rdfs:domain UW2_lexeme ;

 rdfs:range UW3 .

UW2_lexeme a owl:Class .

UW3_lexeme a rdfs:Datatype .

UW2 a UW2_lexeme ;

 UW1_lexeme UW4_label .

4.3 Reasoning on extracted facts

Altogether, the rules extract the following facts from the R1 and R2 graphs:

@prefix example: <https://unl.tetras-libre.fr/rdf/example#> .

example:be_in_a_state(aoj--thing,icl--be,obj--state)

 rdf:type owl:DatatypeProperty ;

 rdfs:domain example:channel(icl--radiowave) ;

 rdfs:range example:state(icl--attribute) .

example:channel(icl--radiowave)

 rdf:type owl:Class .

example:channel(icl--radiowave)__00000014

 rdf:type example:channel(icl--radiowave) ;

 example:be_in_a_state(aoj--thing,icl--be,obj--state) "broadcast(icl>message)" .

example:state(icl--attribute)

 rdf:type rdfs:Datatype ;

 owl:cardinality 2 ;

 owl:equivalentClass [

 rdf:type rdfs:Datatype ;

 owl:oneOf (

 "listening(icl>sensing)"

 "traffic(icl>communication)") ;] .

The Ontology Debugger Plug-In for Protégé [19] executed on the previous triples

finds a logical inconsistency (Fig. 5), that corresponds to the targeted incoherence. R1

declares that Listening and Traffic are the only allowed states for a radio channel,

whereas R2 mention a channel being in broadcast state. To wrap things up informal-

ly, the following incompatible logical axioms have been extracted:

 the data type /state/ is the class owl:oneOf (“listening”, “traffic”),

 /be_in_state/ is a property with range /state/,

 the relation /channel/--/be_in_state/ “broadcast” also exists but is incom-

patible with the two previous axioms.

14

Fig. 5. Result of the Ontology Debugger Plug-In for Protégé

5 Conclusion and future work

In this paper we presented RDF-UNL, an Open Source implementation of the Univer-

sal Networking Language on top of RDF. It equips the Semantic Web with a linguis-

tic framework to soundly represent the meaning of a sentence, directly in RDF. The

UNL is designed to handle multilingualism and proposes enconversion and deconver-

sion services to go from natural languages to UNL graphs, and the other way around.

Therefore, RDF-UNL is a very good middleware for any Semantic Web application

that requires transformations between natural language and RDF (in one way, or the

other), for instance: natural language querying of ontologies, description of axioms in

natural language, content extraction from texts, etc.

We illustrated the usability of RDF-UNL to detect incoherence in system require-

ments. This preliminary example already shows that it is possible to construct mean-

ingful OWL axioms that support non-trivial reasoning. In particular, using RDF-UNL

as an intermediate step from texts to RDFS or OWL shall help us to overcome some

limitations of existing systems: it becomes possible to handle semantic proximity of

terms, to go beyond raw RDF by categorizing resources according to a schema (clas-

ses, instances, data types, etc.), and to reduce the monolingual dependency of Seman-

tic Web software that must work in multilingual situations.

RDF-UNL and the application given as example in this article are currently being

developed as part of the UNseL
16

 project, funded by the French DGA (General Direc-

torate of Defence). Future work will focus on (1) developing a high quality encon-

verter for French and English, dedicated to system requirement documents and (2)

scaling up the construction of OWL axioms and reasoning using SHACL, as well as

including domain or upper ontologies in the process.

16 UNseL : Universal Networking system engineering Language

15

References

1. Etzioni, O., Banko, M., Cafarella, M.J.: Machine Reading. In: AAAI (2006).

https://doi.org/10.1007/978-1-4020-6754-9_9715.

2. Cardeñosa, J., Gelbukh, A., Tovar, E.: Universal Networking Language: advances in theory

and applications. Research on Computer Science. 12, 1–443 (2005).

3. Zablith, F., Osman, I.H.: Linking Stanford Typed Dependencies to Support Text Analytics.

In: Proceedings of the 24th International Conference on World Wide Web. pp. 679–684.

Association for Computing Machinery, Florence, Italy (2015).

https://doi.org/10.1145/2740908.2741706.

4. Schlutter, A., Vogelsang, A.: Knowledge Representation of Requirements Documents Us-

ing Natural Language Processing. (2018). https://doi.org/10.14279/depositonce-7776.

5. Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F., Mon-

giovì, M.: Semantic Web Machine Reading with FRED. Semantic Web. 8, 873–893 (2017).

https://doi.org/10.3233/SW-160240.

6. UNL / rdf-unl, https://gitlab.tetras-libre.fr/unl/, last accessed 2020/04/22.

7. Turtle - Terse RDF Triple Language, https://www.w3.org/TeamSubmission/turtle/, last

accessed 2020/04/23.

8. Specs - UNL Wiki, http://www.unlweb.net/wiki/Specs, last accessed 2020/04/21.

9. Welcome to the UNLWEB, http://www.unlweb.net/unlweb/index.php, last accessed

2020/04/21.

10. RDF Schema 1.1, https://www.w3.org/TR/rdf-schema/, last accessed 2020/04/21.

11. SKOS Simple Knowledge Organization System - home page,

https://www.w3.org/2004/02/skos/, last accessed 2020/04/21.

12. OWL 2 Web Ontology Language Document Overview (Second Edition),

https://www.w3.org/TR/owl2-overview/, last accessed 2020/04/21.

13. Musen, M.A.: The Protégé Project: A Look Back and a Look Forward. AI Matters. 1, 4–12

(2015). https://doi.org/10.1145/2757001.2757003.

14. UNL2010 - UNL Wiki, http://www.unlweb.net/wiki/UNL2010, last accessed 2020/04/21.

15. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In:

Proceedings of the 14th international conference on World Wide Web. pp. 613–622. Asso-

ciation for Computing Machinery, Chiba, Japan (2005).

https://doi.org/10.1145/1060745.1060835.

16. Defining N-ary Relations on the Semantic Web, https://www.w3.org/TR/swbp-n-

aryRelations/#vocabulary, last accessed 2020/04/16.

17. Boguslavsky, I., Frid, N., Iomdin, L., Kreidlin, L., Sagalova, I., Sizov, V.: Creating a Uni-

versal Networking Language module within an advanced NLP system. In: Proceedings of

the 18th conference on Computational linguistics - Volume 1. pp. 83–89. Association for

Computational Linguistics, Saarbrücken, Germany (2000).

https://doi.org/10.3115/990820.990833.

18. Shapes Constraint Language (SHACL), https://www.w3.org/TR/shacl/, last accessed

2020/04/24.

19. onto debugger · Wiki · interactive-KB-debugging / debugger, https://git-

ainf.aau.at/interactive-KB-debugging/debugger/-/wikis/onto-debugger, last accessed

2020/04/25.

